If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2=28y-16
We move all terms to the left:
10y^2-(28y-16)=0
We get rid of parentheses
10y^2-28y+16=0
a = 10; b = -28; c = +16;
Δ = b2-4ac
Δ = -282-4·10·16
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-12}{2*10}=\frac{16}{20} =4/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+12}{2*10}=\frac{40}{20} =2 $
| 0.8x-0.5-0.6x=0.7 | | 7x+6=4×+15 | | 2x-40+2x-20+x+20=180 | | v2+8v=15 | | 8x^2−5x=0 | | 2x+2x0=16 | | 8x2−5x=0 | | 2x/5=-2x/2 | | 9(b-91)=54 | | -4x+8=-14-2x | | 37x50=x | | 4x0.4+0.6=2.2 | | 7b+-5=18.92 | | x+x+30-2x+30-2x=360 | | 4x+5-x=2+2x-1 | | -0.5x+2.1=-0.4x+4.8 | | 15=c/2+11 | | 4(x-2)+9=2x+17 | | 5x13=180 | | -y5+15=3 | | 7=k/3+3 | | x+1+x+2+2x=x+30-2x+x-30+2x | | 5k^2+7k=0 | | 6=w/7.68 | | 7=t-73/3 | | 1/3x+2.7=10.4 | | 8a+3a=9a | | 8÷4=19n÷4 | | (9x+15)*(3x-9)=x | | 2m^2+2m=12 | | (9x+15)*(3x-15)=x | | 2(6y-5)-4(2y-7)=6 |